Ensemble member generation for sequential data assimilation
نویسندگان
چکیده
Using an ensemble of model forecasts to describe forecast error covariance extends linear sequential data assimilation schemes to nonlinear applications. This approach forms the basis of the Ensemble Kalman Filter and derivative filters such as the Ensemble Square Root Filter. While ensemble data assimilation approaches are commonly reported in the scientific literature, clear guidelines for effective ensemble member generation remain scarce. As the efficiency of the filter is reliant on the accurate determination of forecast error covariance from the ensemble, this paper describes an approach for the systematic determination of random error. Forecast error results from three factors: errors in initial condition, forcing data and model equations. The method outlined in this paper explicitly acknowledges each of these sources in the generation of an ensemble. The initial condition perturbation approach presented optimally spans the dynamic range of the model states and allows an appropriate ensemble size to be determined. The forcing data perturbation approach treats forcing observations differently according to their nature. While error from model physics is not dealt with in detail, discussion of some commonly used approaches and their limitations is provided. The paper concludes with an example application for a synthetic coastal hydrodynamic experiment assimilating sea surface temperature (SST) data, which shows better prediction capability when contrasted with standard approaches in the literature. © 2007 Elsevier Inc. All rights reserved.
منابع مشابه
Ensemble Forecast of Analyses: Coupling Data Assimilation and Sequential Aggregation
Sequential aggregation is an ensemble forecasting approach that weights each ensemble member based on past observations and past forecasts. This approach has several limitations: the weights are computed only at the locations and for the variables that are observed, and the observational errors are typically not accounted for. This paper introduces a way to address these limitations by coupling...
متن کاملMerging particle filter for sequential data assimilation
A new filtering technique for sequential data assimilation, the merging particle filter (MPF), is proposed. The MPF is devised to avoid the degeneration problem, which is inevitable in the particle filter (PF), without prohibitive computational cost. In addition, it is applicable to cases in which a nonlinear relationship exists between a state and observed data where the application of the ens...
متن کاملGrid Rainfall Disaggregation toward a Patch-based Ensemble Kalman Filter for Soil Moisture Data Assimilation
Data assimilation is the process by which observation data is used in model simulations and predictions. The Ensemble Kalman Filter (EnKF) is one such assimilation implementation, and efforts are underway to develop an EnKF to assimilate soil moisture data for use in the Land Data Assimilation Schemes (LDAS), developed in part at the Hydrological Sciences Branch at NASA’s Goddard Space Flight C...
متن کاملSequential Data Assimilation: Information Fusion of a Numerical Simulation and Large Scale Observation Data
Data assimilation is a method of combining an imperfect simulation model and a number of incomplete observation data. Sequential data assimilation is a data assimilation in which simulation variables are corrected at every time step of observation. The ensemble Kalman filter is developed for a sequential data assimilation and frequently used in geophysics. On the other hand, the particle filter...
متن کاملOptimal localized observations for advancing beyond the ENSO predictability barrier
The existing 20-member ensemble of 50 yr ECHAM5/MPI-OM simulations provides a reasonably realisti Monte Carlo sample of the El Niño–Southern Oscillation (ENSO). Localized observations of sea surface temperature (SST), zonal wind speed and thermocline depth are assimilated in the ensemble using sequential importance sampling to adjust the weight of ensemble members. We determine optimal observat...
متن کامل